Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph

نویسندگان

  • Shui-Nee Chow
  • Wen Huang
  • Yao Li
  • Haomin Zhou
چکیده

The classical Fokker–Planck equation is a linear parabolic equation which describes the time evolution of the probability distribution of a stochastic process defined on a Euclidean space. Corresponding to a stochastic process, there often exists a free energy functional which is defined on the space of probability distributions and is a linear combination of a potential and an entropy. In recent years, it has been shown that the Fokker–Planck equation is the gradient flow of the free energy functional defined on the Riemannian manifold of probability distributions whose inner product is generated by a 2-Wasserstein distance. In this paper, we consider analogous matters for a free energy functional or Markov process defined on a graph with a finite number of vertices and edges. If N 2 is the number of vertices of the graph, we show that the corresponding Fokker–Planck equation is a system of N nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. However, in contrast to stochastic processes defined on Euclidean spaces, the situation is more subtle for discrete spaces. We have different choices for inner products on the space of probability distributions resulting in different Fokker–Planck equations for the same process. It is shown that there is a strong connection but there are also substantial discrepancies between the systems of ordinary differential equations and the classical Fokker–Planck equation on Euclidean spaces. Furthermore, both systems of ordinary differential equations are gradient flows for the same free energy functional defined on the Riemannian manifolds of probability distributions with different metrics. Some examples are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to Global Equilibrium for Fokker-planck Equations on a Graph and Talagrand-type Inequalities

In recent work, Chow, Huang, Li and Zhou [6] introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When N ≥ 2 is the number of vertices of the graph, they show that the corresponding FokkerPlanck equation is a system of N nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices ...

متن کامل

A note on the Markov property of stochastic processes described by nonlinear FokkerヨPlanck equations

We study the Markov property of processes described by generalized Fokker–Planck equations that are nonlinear with respect to probability densities such as mean ,eld Fokker–Planck equations and Fokker–Planck equations related to generalized thermostatistics. We show that their transient solutions describe non-Markov processes. In contrast, stationary solutions can describe Markov processes. As ...

متن کامل

Fokker-Planck Equation and Thermodynamic System Analysis

The non-linear Fokker-Planck equation or Kolmogorov forward equation is currently successfully applied for deep analysis of irreversibility and it gives an excellent approximation near the free energy minimum, just as Boltzmann’s definition of entropy follows from finding the maximum entropy state. A connection to Fokker-Planck dynamics and the free energy functional is presented and discussed—...

متن کامل

Microscopic derivations of several Hamilton–Jacobi equations in infinite dimensions, and large deviation of stochastic systems

We consider Hamilton–Jacobi equations which characterize optimal controlled partial differential equations of the following types: the Allen–Cahn equation, the Cahn–Hilliard equation, a nonlinear Fokker–Planck equation, and aVlasov–Fokker–Planck equation. In each of the examples, the optimal control problem and its associated cost functional can be derived as limit from a microscopically define...

متن کامل

Numerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks

Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011